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Summary

Improvements have been made to a streamwise upwind algorithm so that it can be used for

calculating flows with vortices. A calculation is shown of flow over a delta wing at an angle

of attack. The laminar, thin-layer, Navier-Stokes equations axe used for the calculation. The

results are compared with another upwind method, a central-differencing method, and experi-

mental data. The present method shows improvements in accuracy and convergence properties.

Introduction

Upwind algorithms are important in computational fluid dynamics for calculations of flows

containing shock waves [1]. Some of them are also able to accurately resolve shear layers

[2,3]. However, most multidimensional upwind algorithms are first constructed in one dimen-

sion and then extended to multidimensions by applying the one-dimensional procedure to each

coordinate direction. In comparison, the present method uses the local stream direction and

flow velocity to construct the upwinding. Hence the switching of flux evaluations always takes

place at sonic values, where the shock waves are located. Therefore this method follows the

flow physics more closely and in that respect is analogous to the rotated differencing [4] algo-

rithm developed for the full potential equation.

The present algorithm is an improvement to a streamwise upwind algorithm, which has been

applied to steady and unsteady transonic flows over airfoils and wings [5,6,7]. In addition to

using rotated differencing to implement upwinding in the streamwise direction, the switching

of fluxes across sonic values is smooth and the entropy condition is automatically imposed in

a manner similar to Godunov's method. Contact discontinuities are sharply captured [5] and

boundary layer profiles are fuller [7] (more accurate) in comparison to a central differencing

method for a case of separated flow over a wing.

In the results presented, comparisons are made with the upwind method of Roe [ 1]. In that

method, an entropy correction is needed, which results in a convergence difficulty. The present

method does not exhibit that problem. Other features [7] of the present algorithm are that

pressure and velocity continuity are enforced in the crossflow direction, and also in the stream-

wise direction as the velocity approaches zero. These features are adequate for transonic flows

without the presence of vortices. However for supersonic flows with vortices, two additional

developments were found to be necessary [8]. First, the manner of using the stream direction

had to be modified to capture oblique shocks sharply. Second, additional terms were needed to

stabilize the calculations. The present algorithm is described in detail.

To demonstrate various capabilities of the present algorithm, the flow was calculated over a

delta wing with a leading-edge sweep of 75* at a Mach number of 2.8 and at an angle of attack

of 16". First, a conical flow approximation was used to limit the calculations to two dimensions,

so that the influence of grid refinement could be determined. Then full three-dimensional (3D)

calculations were performed on a medium-density grid. These computed results were compared

with those of other methods and with experimental data.



Governing Equations

The thin-layer Navier-Stokes equations can be written in conservation-law form in a body-

conforming, curvilinear, coordinate system ( _, ,/, _ ) as follows:

(1)

where Re is the Reynolds number. The vector of conserved quantities Q and the inviscid flux

vector F are

I _u I puU + _ffip

pvU + _p ,
= 7 n,, , F = Y p,,,_ +An,,,

pHU

where J is the transformation Jacobian, p is the fluid density, e is total energy per unit volume,

and H is the total enthalpy. The contravariant velocity component U is defined as

-- _z u + _u v + T/z w. For the _ and _ directions, _' and G can be defined similarly. The

viscous flux vector G" is given in reference [8]. The pressure p is related to the conservative

flow variables Q through the equation of state for a perfect gas:

P tt2 172
p = (',/- 1)[e - _--( + + w2)]

(2)

Also, c is the speed of sound, where c2 = ,,/p/p. See reference [8] for the form of equation (1)

when the conical-flow approximation is imposed.

Numerical Algorithm

The upwind algorithm is applied to the inviscid fluxes E, F, and G in equation (1). (The

viscous term in equation (1) is discretized by a standard procedure [8], which uses second-order,

central-differencing.) The upwind algorithm is described by the following formula for the cell

interface flux F with a surface vector, S = ( T/z, _, _/,),

1 IVnl x {[ F_+ Fd + [ Flsign (Ut)+ st A'Ft] cos201P(Q,,Q_,sj+_)= _ ]

-[ F_sign (U_) + s,. A'F_] cos20r - IAIaQ sin20} ,

(3)

where Ql and Qr are left and right states, respectively, and the metric terms _/z, _/_, and _, are

normalized by IVnlask, = ,7,/IVnl,kv = n#lVnl, and k, = n,/IV,H. Thecontravariant

velocity U is also normalized by [_7_I and used as U = kzu + k_v + k_w. For the first-order-

accurate computations, l = j and r = j + 1. For higher-order extensions, the MUSCL approach

[3,9] is used. Sign(U) equals the sign of U and 0 is the rotation angle which will be determined

later. The symbol * indicates local sonic values [5].



,a*F = _'(pq)e, = (p'q" - pq)e,, (4)

(5)

where q is the velocity magnitude and e, = ( 1, u, v, w, H) r is the sum of the two acoustic wave

eigenvectors. Note that equation (4) is based on the rotated difference formula [4,5] for the full

potential equation. Equation (4) and the switches sl and s,., which will be specified, use the

speed q and the Mach number q/c rather than the velocity component U and the Mach number

component U/c that many other upwind methods use. With the use of this rotated differencing,

the switching of terms at transonic shock waves occurs independently of their alignment to grid
lines.

The last term in equation (3) is defined as follows:

Ap
IAlaQ _IUIAQ + (c-IUI)[ e, + paU ed]

Ap _ (6)e, + pcaU ed+ (Ap_ ) IUIe, + p IUI e,.
C

The variables in equation (6) are averaged between the left and right states, except when

they follow A. Then, for example, AQ = Q_ - Qt. Also, ed = (O,kz, k_,kz,U) r,

which is the difference of the two acoustic wave eigenvectors, ee = (1, u, v, w, q2/2)r and

e, = (O,e_2,e_3,e_4,e_5) T. Here, e_2 = Au- k= AU, e_3 = Av - k_ AU,

ev4 = A w - k, A U, and e_5 = ue,,2 + ve_3 + wev4. In Cartesian coordinates, e¢ is the

entropy wave eigenvector and e,, is a linear combination of the vorricity-wave eigenvectors.

As originally developed [5,6], equation (3) did not use the terms in equation (6) r Next the

terms in equation (6) that use e., and ed were added [7] to enforce pressure continuity in the

cross-flow direction and in the streamwise direction as the Math number approaches zero. Fi-

nally, the terms using e, and e, were added [8] for flows containing vortices.

Following reference [4], the switches st and s,. are defined in the manner of Godunov's

method as follows: for U _> 0,

aI = 1-e,_et, a_= (1-c,,,)(1-e_),

1 2
el,,,,,,. = _-[ l+sign(Mi,.,,_ - 1)],

(7)

and M,n denotes the Mach number of the averaged state.

Note that there is current research in improving the sonic point operator [10]. An alternative

method to those in reference [10] is: for U > 0,

at= 1-e_n(2et-1) , a_.= (1-e,)(1-2e,). (8)

This smooth switch is identical to equation (7) except at sonic expansion points. At those points,

one- and two-dimensional calculations using equation (8) have shown increased accuracy over

equation (7). Equation (8) was derived by modeling a transonic expansion wave for Burger's

equation. When the sonic value occurs midway between mesh points, this modeling is exact.
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Rotated Differencing

As originally developed, the rotation angle 0 used the cosine of the velocity as cos$ = U/q

when the flow was supersonic. However, it is important to detect whether the velocity projected

to the grid line is beyond the Mach cone. Thus, U/q is replaced by M • U/q = U/c. If U/c

becomes larger than one, cos0 is set to one. This enhances the ability to capture oblique shock

waves [11].

This feature leads to a favorable resolution of bow and crossflow shocks, but it allows the

existence of crossflow expansion shocks. To avoid expansion shocks, the rotation angle is

determined by a mixture of averaged (m) and pointwise (l, *9 values:

cos200, min[ (1 _) U--_-_2 0"2= -- tk L,r

d, 11
t,r

(9)

The following is used for evaluating $ in this paper because of the smoothness:

(10)

where pl and P2 denote upstream and downsu'cam pressures, respectively. The sine is deter-

mined by an arithmetic average of the cosines: sin20 = 1 - _(cos20_ + cos20,).

Results

The algorithm given by equation (3) has been tested for flow over a delta wing. Both 2D

calculations, using the conical flow approximation [8], and 3D calculations have been made.

The calculations are compared with Roe's method [1,2] and central differencing [8] (CD).

Computations arc carried out in the following manner. The LU-ADI method [12], which

can be modified for the conical flow fields [13], is used for testing the two upwind algorithms

as well as the CD algorithm. Each of the three algorithms is implemented explicitly into the

LU-ADI method, so that steady flows arc determined by each of the three algorithms. Laminar

flow is also assumed. For third-order accuracy, the MUSCL scheme with Korcn's differentiable

limitcr [9] is used.

Delta-Wing, Conical-Flow Calculations

This test case considers a vortical flow field over a delta wing in order to examine the present

formula's capability for computing shear flows. Computations are done for flow past a 75 °

delta wing at Moo = 2.8 , c_ = 16", and Re = 3.565 × 10 6 , for which experimental data

are available [14]. Figure 1 shows the model geometry, and the typical experimental flow field

is shown schematically in figure 2. For the computations, the conical approximation is used.

Three grids arc used for a grid-refinement study. The coarse, medium, and fine grids all use

51 points normal to the body and 27, 51, and 99 points circumferentially, respectively.

Computations were done with the present method, Roe's method, and the CD method.

Figure 3 shows a comparison of density contour plots of three numerical solutions on the fine

grids. (The density values are on a portion of the sphere of radius equal to one.) Two shock

waves can be observed: one is the bow shock wave on the windward side of the delta wing,

and the other is the crossflow shock wave on the leeward side. The present method and Roc's

method give similar contour plots for those shock waves, but the CD method gives smeared



plots. (For the CD method,the smoothingcoefficient _¢ was set to 0.1 in the fine-grid case

instead of _¢ = 0.05 in the other cases because at convergence the solution had numerical os-

cillations with s = 0.05 in the fine grid.) The low density regions at both the primary and

secondary vortices also indicate that both upwind methods give similar solutions, but the CD

method gives a smeared one.

A comparison of total pressure contour plots on the fine grids is shown in figure 4. The

primary vortex appears similar in both upwind solutions, in respect to its location and the con-

tour level, but not in the CD solution. The primary vortex appears off the boundary layer in

both upwind solutions, but the primary vortex and the boundary layer touch each other in the

CD solution. The shear-flow region separated from the leading edge also shows differences in

the three solutions. The present formula gives a sharper solution than Roe's in this shear-flow

region. Again, the CD formula gives the most dissipative solution.

Figure 5 shows comparisons of total pressure profiles normal to the leeward surface of the

wing at Z/= 0.216 on the coarse, medium, and fine grids. See reference [8] for comparisons at

It = 0.1, approximately on the primary vortex, and I/= 0.2, approximately on the secondary

vortex. Figure 5(c) shows the main features of the complicated profiles. The first peak near

z = 0 indicates an edge of the boundary layer under the secondary vortex. The following local

minimum corresponds to the secondary vortex. The nextpeak near z = 0.025 indicates the total

pressure recovery between the secondary vortex and the shear layer separated from the leading

edge. This shear layer from the leading edge is observed as the next local minimum. Finally,

the flow recovers to the free stream. The second peak between the secondary vortex and the

leading-edge shear layer appears to be higher with respect to both level and location for all three

solutions as the grids are refined. The width between the peak and the region of the recovery

to the free stream corresponds to the width of the separated shear layer. The present formula

gives the narrowest shear layer in the three, even on the fine grid. This crispness indicates that

the present formula computes the shear flow most accurately.

Comparisons of pressure coefficient distributions on the leeward wing surface on the coarse,

medium, and fine grids are shown in figure 6. Experimental data [14] are also indicated in

figure 6 by upper and lower triangles corresponding to data on the right- and left-hand side

of the wing, respectively. Results obtained with the present formula are found to be slightly

more accurate than those with Roe's method when compared with experimental data as well as

with the fine-grid solution. The CD solution has a large discrepancy between the two upwind

solutions on the coarse grid, but the discrepancy decreases as the grids are refined.

Finally, a comparison of convergence histories of calculations, using the present and Roe's

methods, is shown in figure 7. The locally varying time stepping was used [12]. Because of

the stiffness of conical source term, A to was set to 0.1 in the first 3000 iterations from the

impulsive start. Then, Ate = 0.25 for the next 1000 iterations, and finally Ate was set to 0.5.

The maximum CFL number reached about 20. The present formula shows better convergence

in both the L2 norm and the jr. Leo norm (rescaled by the transformation Jacobian). On the

other hand, Roe's formula reaches a limit cycle. The calculations by both upwind methods were

started from uniform free-stream conditions. However, the calculations by the CD method

were started from a converged solution by the present formula. The CD method needed a

smaller A to: that is, one-fifth of the one used for the upwind computations. The present formula

converged the best of the three for this shear-flow computation with respect to the convergence

rate and the order of magnitude of convergence. The difference in CPU time between the

present formula and Roe's formula is less than 1% in the present computations.



Delta-Wing, Three-Dimensional Calculations

A medium-density grid in the curvilinear coordinate system ( _, 71, _ ) was used for cal-

culations for both the present method and Roe's method. There were 25 × 51 x 41 points in

the _ (conical), 1,1(circumferential), and _ (normal) directions, respectively. The convergence

properties were similar to those in the conical-flow calculations. Both methods produce similar

results to those obtained in the conical-flow calculations, including the treatment of the bow

shock wave and the vortices. Figure 8 shows velocity-magnitude plots at an axial location 90%

of the distance from the nose to the trailing edge of the model. First-order accurate results are

shown in figure 8(a). The present method (plotted on the right side) shows a slightly larger

high-speed region than Roe's method (plotted on the left side). As shown by the third-order

results in figure 8(b), this higher speed is more accurate. Hence, the present scheme is less

dissipative than Roe's. In this 3D test computation, the CPU time per grid point per iteration

is 36.6, 35.7, and 32.1 _sec for the present, Roe's, and CD computations, respectively, on a

CRAY X-MP computer. Hence, in 3D, the present method takes about 2.5% more time than

Roe's and 14% more time than CD. This confirms that the required arithmetic operations of the

present formula are comparable to those of Roe and CD.

Conclusions

An improved streamwise upwind algorithm has been derived and applied to conical flow

fields. In comparison with Roe's method, the present formula (1) captures oblique shock

waves in the same manner, (2) requires arithmetic operations of the same order, (3) has better

convergence properties, i.e., no limit cycle, and (4) has an advantage over Roe's in comput-

ing shear flows accurately. The results also indicate that the CD method is more dissipative in

the resolution of shock waves and shear layers than upwind methods. In addition, the present

method switches differencing at sonic values rather than at values that are dependent on the

coordinate system, which is more in accord with the fluid physics.
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